Duc-Anh Pham

Al Research Engineer — Computer Vision & Deep Learning

Koganei, Tokyo | +81 808 123 7259 | phamducanh2712@gmail.com github.com/ducanh2712 | linkedin.com/in/duc-anh-pham

SUMMARY

Graduate student at TUAT specializing in AI, Computer Vision, and Image Processing. Focused on lightweight models, quantization-aware training, and inference acceleration for real-time deployment on resource-constrained embedded systems. Experienced in embedded IoT systems with 4G/5G connectivity and edge computing.

EDUCATION

Tokyo University of Agriculture and Technology

M.S. in Department of Electrical Engineering and Computer Science

Tokyo, Japan Aug 2024 - Present

Hanoi University of Science and Technology - School of Electrical and Electronic Engineering Graduated in Elitech K64 Embedded system and IoT

Hanoi, Vietnam Aug 2019 - May 2023

PUBLICATION

Dual-Rate Alpha Binary Networks: An Energy-Efficient Optimization Approach for Waste Classification

July 2025

Python, Pytorch

Binary Quantization Project

Authors: Duc Anh Pham and Hironori Nakajo

18th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI 2025), Kitakyushu, Japan, 2025

- Proposed a novel dual-rate binary quantization neural network (DRA-BNN) using quantization-aware training (QAT) for real-time waste classification on embedded devices.
- Achieved 89.80% accuracy on CIFAR-10 with 237M FLOPS, outperforming ReLU and prior binary networks.
- On a public garbage dataset, reached **82.66% accuracy** at **237.63M FLOPS**, significantly more efficient than ResNet18 (**91.62%** at **1820M FLOPS**).

Estimating the Coverage of Multiple Species of Paddy Field Weeds Using Semantic Segmentation Image Segmentation and Classification

July 2025 Python, Pytorch

Authors: Yusuke Sayou, Duc-Anh Pham, Tetsuya Nakamura, Keisuke Katsura, Taiichiro Ookawa and Hironori Nakajo

18th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI 2025), Kitakyushu, Japan, 2025

- Proposed a semantic segmentation method to estimate weed coverage in rice paddies, classifying into five categories including broadleaf, Cyperaceae, and aquatic plants. Constructed a real-world dataset captured via smartphone with top-down images covering 1 m² per sample.
- Achieved a mean IoU of **0.60** using a single-stage segmentation approach, outperforming multi-stage variants in both accuracy and efficiency.

Navigable Areas Segmentation Method for Unmanned Surface Vehicles in Paddy Fields

Oct 2023

Image Navigation

Python, Pytorch

Authors: Kentaro Machida, Tetsuya Nakamura, Jingyong Cai, Thinh Nguyen-Quang, <u>Duc Anh Pham</u>, Han Huy-Dung, Huy Hoang Nguyen, Taiichiro Ookawa, Hironori Nakajo

2023 IEEE 11th Region 10 Humanitarian Technology Conference (R10-HTC), Rajkot, India, 2023, pp. 1088–1094, doi: 10.1109/R10-HTC57504.2023.10461770

- Developed a segmentation-based navigation system for unmanned surface vehicles operating in flooded paddy fields.
- Achieved 85.2% segmentation accuracy and enabled a 91% success rate in autonomous navigation trials.

A novel Violence Detection for Drone Surveillance

May 2023

Image Detection

Python, YOLO

Authors: Huy Hoang Nguyen, Quoc Trung Le, Van Quang Nghiem, Minh Son Hoang, Duc Anh Pham

2023 International Conference on Communication, Circuits, and Systems (IC3S), BHUBANESWAR, India, 2023, pp. 1–6, doi: 10.1109/IC3S57698.2023.10169405

- Built a YOLOv4-based real-time violence detection system for aerial drone footage.
- Achieved 92.3% precision and 88.7% recall on a custom surveillance dataset at 18 FPS on Jetson Nano.

PROJECTS

Student Detection System

Image detection Project

Mar 2022 - May 2022 Python, Keras, OpenCV

- Developed a real time system for human detection
- Utilized YOLOv5 models for bounding box extraction

Sleeping Positions Recognize System

Image segmentation classification Project

- · Developed a system to recognize 23 human sleeping positions in hospital bed
- Implemented pre-trained ResNet50 and EfficientNetB0

June 2022 - Aug 2022 Python, TensorFlow

EXPERIENCE

Nakajo Laboratory - Tokyo University of Agriculture and Technology (TUAT)

Tokyo, Japan Oct 2024 - Present

Graduate student

- Real-time computer vision applications and edge AI deployment on resource-constrained hardware (Raspberry Pi, Jetson Nano).
- Research on classification, semantic segmentation, quantization-aware training, and binary neural networks using PyTorch and Keras.
- Data collection, annotation, and processing for agricultural and paddy field applications.

Viettel High Technology Industries Corporation

Embedded/Telecommunications Network Developer

Hanoi, Vietnam Oct 2023 - Oct 2024

- Research and development of 4G/5G and Mixmode network technologies
- Physical layer development for Downlink transmission process
- Interface development for Mixmode Network chips from Viettel, Intel, Qualcomm, Zilnk, Comba
- · Created an automated quality testing tool for RRU using Python

EDABK Laboratory – Hanoi University of Science and Technology (HUST)

AI - Embedded Research Student

Hanoi, Vietnam Apr 2021 - Oct 2023

- · Research in Machine Learning, Deep Learning, and CNNs
- Video/Image Processing for human sleep recognition and violence detection using drones
- Development of Embedded OS and RTOS projects

TECHNICAL SKILLS

Programming Languages: Python, C/C++, MATLAB, Shell scripting **Deep Learning Frameworks:** PyTorch, TensorFlow, Keras, TensorRT

Libraries & Tools: NumPy, Pandas, Scikit-learn, OpenCV, Git, Docker, ONNX

Embedded & Networking: 4G/5G Physical & Downlink Architecture, Real-Time OS (RTOS), Microcontrollers, Edge Computing

LANGUAGES

Vietnamese: Native

• English: IELTS Overall Band 7.5

Mar 2023

• Japanese: JLPT N3 July 2024