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Abstract—The current global waste management issue contin-
ues to grow, with waste segregation becoming an increasingly
urgent challenge. In response, Al-based solutions have shown
promising potential for waste classification. However, these solu-
tions often encounter performance bottlenecks due to computa-
tional constraints. To address these challenges, we propose a novel
approach for waste classification, namely the Dual-Rate Alpha
Binary Networks: An Energy-Efficient Optimization Approach
for Waste Classification. This method introduces a Binary Neural
Network with a new trainable parameter using Dual Variable
Learning Rates and employs a flexible weight/activation quanti-
zation strategy with Parametric Rectified Linear Unit (PReLU).
By combining these techniques with early stopping, our method
demonstrates improved performance. The proposed approach is
evaluated on the CIFAR10 dataset and shows favorable results
compared to existing models. Further experiments on Convo-
lution Neural Network (CNN) and conventional Binary Neural
Network (BNN) models, utilizing a publicly available Garbage
Classification dataset with over 15,000 images, demonstrate
high accuracy and low FLOPS. This research opens up new
possibilities for applying binary neural networks to resource-
constrained devices.

Index Terms—binary neural network, dual variable learning
rate, waste classification, energy-efficient computing

I. INTRODUCTION

A. Waste Management Problem

With societal development, waste disposal has become a
significant challenge for environmental sustainability, particu-
larly in densely populated and developing countries.

Over the years, numerous efforts have been made to address
pollution caused by waste, including recycling, disposal, and
treatment. However, owing to the manual classification of
various types of waste, individuals often encounter challenges
in sorting them efficiently, and the significant consumption
of time, effort, and financial resources has become an urgent
issue that requires immediate attention.

The question that must be addressed is how modern tech-
nologies can be applied to automate the waste classification
process, thereby minimizing manual labor, enhancing environ-
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mental protection, and promoting global economic develop-
ment.

B. Problem Statement

Researchers are actively developing methods for automating
waste classification using computer vision and deep learning
technologies. Convolutional Neural Networks (CNN) and their
advanced variants, such as AlexNet [1], VGG [2], Incep-
tion [3], and ResNet [4], have shown promising results for
sorting tasks. For example, Kang et al. [5] applied a ResNet34-
based algorithm for waste classification, incorporating features
such as multifeature fusion and residual unit reuse. Sha Meng
et al. [8] proposed the X-DenseNet model, which integrates
Xception with DenseNet, achieving an accuracy of 94.1 % on
the TrashNet dataset.

However, CNNss typically use full-precision (32-bit) weights
and activation functions, which often result in a large number
of parameters, complex architectures, and lengthy processing
times, making them impractical for resource-limited environ-
ments such as mobile devices and wearables. For instance,
YOLOV3 [7] achieved only 60% accuracy in garbage detection
while processing at 20 fps, which is suitable for real-time
applications but not ideal for classification tasks on low-power
devices. To address these challenges, one promising solution
is the use of quantization techniques, which significantly
reduce the model size and computational complexity while
maintaining acceptable performance in resource-constrained
environments.

C. Proposed Solution

Quantization is a technique used to reduce the computa-
tional complexity and memory requirements of deep neural
networks by reducing the bit-widths of the weights and acti-
vations. This process compresses the model, making it more
suitable for resource-constrained environments. Quantization
techniques can be applied to different parts of a network,
including weights, activations, or both, using various optimiza-
tion approaches to minimize the accuracy degradation.



Among these techniques, Binary Neural Networks (BNNs)
represent an extreme case of quantization, where parameters
are restricted to binary values (+1 or -1). Although BNNSs re-
duce computational and memory requirements, they often lead
to reduced accuracy owing to excessive quantization. Conse-
quently, many studies have focused on modifying the model,
refining binaryization methods for weights and activations,
and applying optimization techniques such as regularization,
learning rate adjustment, and flexible activation functions to
mitigate the negative impact of extreme quantization. Notable
approaches include BinaryConnect [10], XNOR-Net [11], and
differentiable surrogates such as the straight-through estimator
(STE) [12] or Soft Binary Activation [13].

Despite significant progress in the aforementioned research,
gradient loss remains a major challenge. Our method addresses
this by using learnable parameters (apyLr) for each parameter,
bypassing the traditional approach and effectively optimizing
gradient loss, resulting in:

o Proposing a weight and activation quantization model

without using STE.

o Applying an efficient activation function, minimizing

computational cost (FLOPS) without sacrificing accuracy.

e The effectiveness of the method was demonstrated

through experiments on CIFAR-10 and a 12-class public
garbage classification dataset.

The remainder of this paper is organized as follows. Related
works are reviewed in Section II to provide the research
context. The methodology is detailed in Section III. Section IV
describes the experimental setup and implementation. Results
and analysis are presented in Section V. Finally, conclusions
and future work are discussed in Section VI.

II. RELATED WORK
A. Binary Neural Networks

A BNN is a specialized type of neural network in which
some or all the weights and activations are constrained to 1-
bit values, except for the input and output layers as shown
in Fig. 1. The process of quantizing from 32-bit precision to
1-bit, known as binarization, is expected to reduce complexity
and computation costs. Rastegari et al. [14] demonstrated that
XNOR-Net reduces memory usage by approximately 32 times
compared to conventional CNNs while maintaining effective
performance. Moreover, the use of BNNs introduces a novel
approach to deep learning computations by leveraging bitwise
operations such as XNOR and bit-counting, which signifi-
cantly enhance computational efficiency. These operations al-
low BNNSs to replace conventional matrix multiplications with
lightweight binary operations, making them highly suitable for
deployment in resource-constrained environments such as edge
devices and mobile applications.

In Binary Neural Networks (BNNs), the binarization func-
tion is typically the sign function, which converts the output
into either +1 or -1, as shown in (1).
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Fig. 1. Binary Neural Networks (Source: Yuan and Agaian [15]).

-
O= Neural Cell ( ): Outputs

While this binarization simplifies the computation, it in-
troduces a significant challenge during the backpropagation
phase. Specifically, the sign function is non-differentiable,
which means that the gradient of the activation with respect to
the weights is zero almost everywhere, making it impossible
to update the weights using traditional gradient descent. STE
is commonly used to approximate the gradient of the sign
function by treating it as an identity function during the
forward pass and allowing the gradient to pass through as if the
activation was continuous during the backward pass. This en-
ables the use of gradient-based optimization techniques despite
the non-differentiability of the sign function.An illustration of
the process using both the sign function and STE is shown in
Fig. 3. This approach has been widely adopted in BNNs to
enable efficient training while maintaining binary activation.

B. ResNet Model

Residual Networks (ResNets) were introduced by He et
al. [4], revolutionized deep learning by addressing the van-
ishing gradient problem using residual connections. These
connections allow the gradients to propagate more effec-
tively, thereby enabling the training of very deep networks.
In particular, ResNet-18 [16], which consists of 18 layers,
provides a simpler and more efficient architecture. ResNet-
18 exhibited significant improvements in image classification
tasks, outperforming previous architectures on benchmarks
such as ImageNet. For BNN, ResNet-18 was adapted for the
BNN, allowing for effective training with binary weights and
activations.

C. Dual Variable Learning Rates

Dual Variable Learning Rates (DVLR) [17] is a method
designed to optimize the training process of neural networks
by adjusting the learning rate for different variables based
on their importance. This method helps achieve better con-
vergence by applying distinct learning rates to different pa-
rameter groups, ensuring that critical parameters are updated
faster, whereas less important parameters are updated more
slowly. This approach has been shown to improve the training
efficiency and model performance across a variety of tasks,
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Fig. 3. The Sign function and STE used in Binary Neural Networks (BNNs)
(Source: Yuan and Agaian [15]).

including image classification and other common machine
learning benchmarks.

The effectiveness of DVLR was validated through extensive
experiments on standard datasets, demonstrating its ability to
accelerate training and achieve higher accuracy. Specifically,
it has been shown to outperform traditional methods with a
single learning rate, highlighting its potential for optimizing
neural network training.

In terms of implementation, the update rule for parameters
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Fig. 4. Tllustration of the proposed DRA-BNN framework, highlighting key
components and data flow.

W in a network with corresponding gradients VW under
DVLR can be expressed as:
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where 17 and 7y are the learning rates applied to different
parameter groups. This differential approach to learning rate
application ensures that more important parameters are up-
dated at a higher rate, whereas less significant parameters are
adjusted more conservatively.

By incorporating DVLR, it becomes possible to stabilize
training and improving the performance of the BNNs. This
method can be used to apply different learning rates to binary
weights, enhance convergence and prevent the model from
becoming stuck in suboptimal solutions. Thus, the DVLR is a
promising approach for future research on BNNs, potentially
leading to more efficient and accurate binary models.

III. METHODOLOGY

In this section, we address the limitations of traditional
BNNSs during the training process, such as information loss,
reduced accuracy, and limited flexibility, particularly when
the input data vary significantly. To address these issues,
we propose the Dual-Rate Alpha Binary Networks (DRA-
BNN). This approach enhances quantization while maintaining
a meaningful gradient flow during backpropagation, effectively
preventing gradient vanishing.The flowchart in Fig 4 illustrates
the flow of the proposed method.



A. Alpha Quantization

In DRA-BNN, the coefficient a.py 1 g serves as a learnable
parameter used to scale the binarized weights after applying
the sign(-) function. The training of apy g is performed via
gradient descent by using the DVLR method.

In general, the binarized values are computed as follows:

binary_values = sign(value) - apy g (3)

Where:

o sign(weight): The sign function, returning +1 if
weight > 0, —1 if weight < 0, and 0 if weight = 0.
e apvrr: A learnable scaling factor, initialized to 0.5.

By adjusting the apyrr coefficient based on the data dis-
tribution, the binarization coefficients are better characterized
and distributed according to the task.

B. Gradient of apyrg in the Backward Pass

The gradient of apy 1R is calculated based on the gradient
of the loss with respect to the output (grad_output) and the
binarized weight values:

grad, . = Z(grad_output - sign(weight)) 4

Where:

o grad_output: The gradient propagated back from the
subsequent layer.
e > : summation of all elements in the weight tensor.

C. Updating o in DVLR

The primary goal is to adaptively adjust  with DVLR
during training to improve the binarization process while
ensuring that the gradient flow remains meaningful.

First, o is constrained within the range [0.1,2.0] for stabil-
ity:

Q41 = Clamp(ozt_H, 01, 20) (5)

To update o, we apply a gradient descent rule:
iyl = O — N - VQL (6)

Where «; represents the a coefficient at time step ¢, 7, is
the learning rate for o, and VL is the gradient of the loss
function with respect to a.

The gradient VL ensures that the scaling factor o con-
tributes to preserving the critical information during binariza-
tion. This allows the model to adaptively adjust the scaling
factor based on the characteristics of the data, there by
improving the overall performance without relying on the
traditional STE approach.

By updating « in this manner, DVLR enables the model
to maintain the computational efficiency while improving the
expressiveness and accuracy of the binarized model. The
independent and adaptive learning of both weights and «
results in a more robust network that can manage imbalanced
distributions and vanishing gradients effectively.

D. PReLU Activation Function

In this study, we explored the use of a more effective
activation function to enhance the training performance of
the model. Specifically, we consider the use of a Parametric
ReLU (PReLU) [20] activation function as an alternative to
the traditional ReLU. The PReLLU function is defined as (7):

(@) = {x if x >0, 7

apreur  if <0,

where apgrery 1S a learnable parameter during training.

Unlike ReLU, which outputs zero for negative inputs,
PReLU allows the slope of the negative part of the ac-
tivation function to be learned via the parameter apgreLy-
This addresses the “dying ReLU” problem, in which certain
neurons may become inactive if their inputs are consistently
negative, causing them to stop updating and resulting in poor
learning. By learning the parameter aprery, PReLU ensures
that neurons can still learn from negative inputs, improving
model performance compared to ReLU.

IV. EXPERIMENTS
A. Dataset

In this experiment, we first validated our model using the
CIFAR-10 dataset [18], a widely used benchmark for image
classification tasks. Subsequently, we applied our model to a
more specific dataset, the Garbage Classification Dataset [19],
which consists of 15,150 images categorized into 12 classes of
household garbage: paper, cardboard, biological, metal, plastic,
green-glass, brown-glass, white-glass, clothes, shoes, batteries,
and trash.

This dataset was created to improve the recycling process
by classifying waste into more specific categories, allowing
for better sorting and higher recycling efficiency. Unlike many
other datasets that focus on fewer classes (categories 2-6), the
inclusion of 12 categories can significantly enhance recycling
efforts by allowing a more precise identification of waste types.

B. Model Setup and Training

The experiments were conducted on a system with an
NVIDIA GeForce GTX 1660 GPU and an Intel Core 15-10400
CPU. The software environment includes Python 3.9.21 and
PyTorch 2.5.1.

The model used was BinaryResNetl8, which was created
by binarizing all layers except the input and output layers
to reduce the computational cost. The initial value of the
apyvLr parameter was set to 0.5, and the learning rate was
initialized at 0.001. The Adam optimizer was used with the
CrossEntropyLoss function for multi-class classification, and
the learning rate was adjusted using the ReduceLROnPlateau
scheduler, which decreases the rate by 50% if the loss did not
improve after five epochs, with a minimum LR of 0.0001.

Training was performed for up to 400 epochs, with early
stopping applied if there was no significant improvement in
the loss after 10 epochs (delta = 0.001). The dataset was
split into 80% for training and 20% for validation using data



TABLE I
PERFORMANCE COMPARISON ON CIFAR-10
Model Accuracy (%) | FLOPS (M)
CNN-ResNet18 93.3 1820
XNOR-Net 89.83 410
BinaryNet 88.7 700
BinaryConnect 85 550
LAB-Net 87.7 700-1000
DRA-BNN (ReLU) 85.47 237
DRA-BNN (PReLU) 89.80 237
TABLE II
PERFORMANCE COMPARISON ON PUBLIC GARBAGE DATASET
Model FLOPS (M) Accuracy
CNN-ResNet18 1820 91.62% (epoch 167)
BNN-STE 237.63 42.89% (epoch 61)
DRA-BNN 237.63 82.66% (epoch 97)

augmentation techniques such as rotation, flipping, and color
adjustment applied to the training set. The validation set was
then resized and normalized.

V. RESULT

The performance of the model was evaluated based on its
accuracy and its computational efficiency was measured by
calculating FLOPS.

A. Model Performance Evaluation on CIFAR-10

In Table I, our approach, using PReLU activation, outper-
forms ReLU in terms of accuracy, with DRA-BNN (PReLU)
achieving 89.80% accuracy compared with 85.47% for DRA-
BNN (ReLU). This demonstrates that the PReLU allows
the model to adapt better to negative inputs, leading to an
improved overall performance.

Moreover, while CNN-ResNet18 use higher bit-widths for
both weights and activations, our DRA-BNN model still
achieves competitive results with significantly reduced compu-
tational costs (237M FLOPS). This highlights the feasibility
of our approach, providing a strong trade-off between per-
formance and computational efficiency, making it suitable for
resource-constrained environments.

B. Dataset-Specific Result

Based on the promising results on CIFAR-10, our method
was evaluated for waste classification. As shown in Table II,
the results demonstrate that DRA-BNN achieved an accu-
racy of 82.66% after 97 epochs, outperforming BNN-STE,
which only achieves 42.89% after 61 epochs. Although CNN-
ResNet18 achieves a higher accuracy (91.62%), the DRA-
BNN method, with much lower FLOPS (237.63M compared
to 1820M for CNN-ResNet18), demonstrates the feasibility of
the model in computationally constrained environments while
maintaining good performance compared to other methods.

To further illustrate the effectiveness of the proposed model,
qualitative testing results are shown in Figure 5, where several
example predictions from the test set are visualized. Further-
more, the loss and accuracy plots are shown in Fig.(s) 6 and 7,

respectively, and the confusion matrix, displayed in Fig 8
provides a clearer perspective on the classification results.
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Fig. 5. Garbage Classification Testing Result.
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Fig. 8. Confusion matrix result on Public Garbage Dataset.

VI. CONCLUSION

In this paper, we propose Dual-Rate Alpha Binary Networks
(DRA-BNN) for weight/activation quantization. In the DRA-
BNN, the trainable DVLR alpha parameter improves the per-
formance more effectively than in traditional BNN models. By
binarizing weights relative to the mean value and computing
gradients without relying on STE, this approach provides
a compelling trade-off between model size, computational
efficiency, and accuracy.

The results presented on general datasets such as CIFAR-10,
and specifically on the Garbage Dataset show that the DRA-
BNN model, utilizing PReLU, achieves stable performance
without complicating the model. Therefore, we conclude that
this solution is feasible and opens up new avenue for utilizing
high-accuracy BNN models in embedded systems or special-
ized FPGAs for real-time applications.

In this research, current experiments assume clean, well-
annotated input data and do not account for domain shifts
or deployment-specific noise. In future work, we plan to
investigate the robustness of DRA-BNN under real-world
variations and further optimize its computational primitives for
efficient FPGA deployment, such as exploiting parallel binary
operations and reducing memory access latency in hardware
pipelines.
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