Estimating the Coverage of Multiple Species of
Paddy Field Weeds Using Semantic Segmentation
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Abstract—This study proposes a semantic segmentation-based
method for estimating the coverage of multiple types of paddy
field weeds. The method classifies weeds into three categories:
broadleaf plants and grasses, Cyperaceae species, and submerged
or floating aquatic plants. Rice and background are also included,
resulting in a five-class segmentation task. To evaluate the
method, we constructed a new dataset consisting of top-down
images of rice paddies captured using a smartphone, with each
image covering approximately a 1 m* area. Four segmentation
approaches were compared: single-stage segmentation; two-stage
segmentation with background removal; two-stage segmenta-
tion with rice removal; and two-stage segmentation with both
background and rice removal. The single-stage segmentation
method, which directly classifies all classes in a single pass,
produced the best overall results, with a mean IoU of 0.60.
These findings suggest that the proposed method is capable of
classifying and quantifying multiple weed types from real-world
field images. Furthermore, the simplicity and efficiency of the
single-stage approach make it a practical and promising tool
for weed monitoring and management in precision agriculture,
particularly in resource-constrained field environments.

Index Terms—Semantic Segmentation, Rice, Weeds, Multi-
stage Segmentation, Multi-class Classification

I. INTRODUCTION

A. Current State of Japanese Agriculture

Japanese agriculture faces serious challenges, including a
declining number of core agricultural workers and an aging
population. The number of core agricultural workers is de-
creasing, reaching 1.363 million in 2020 , which is a 22%
decrease from 1.757 million in 2015 [1].
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To address the challenges faced in Japanese agriculture,
it is essential to secure and retain the younger generation
of agricultural workers. In the face of labor shortages, there
is a growing need to streamline and enhance agricultural
operations through technological innovations. Therefore a new
approach is required to achieve efficient and sustainable agri-
culture. [2]

B. Efforts Toward Sustainable Agriculture

In May 2021, the Ministry of Agriculture, Forestry and Fish-
eries of Japan formulated the “Green Food System Strategy,”
setting ambitious goals such as expanding the area of organic
farming to 25% of all farmland, reducing the use of chemical
pesticides by 50%, and reducing chemical fertilizers by 30%
[2]. The promotion of organic agriculture is expected to play
a key role in addressing environmental issues currently facing
the agricultural sector.

Organic farming faces several challenges. Among these,
the most critical is the difficulty in weed management owing
to the non-use of herbicides. Inadequate weed control can
significantly reduce crop yields, leading to an increased eco-
nomic burden on producers and potentially diminishing their
motivation.

C. Objective

The purpose of this study is to estimate weed coverage
in paddy fields by analyzing field images where rice and
weeds coexist. Vertically downward images were taken using
a smartphone, each covering approximately 1 m2.



Traditional methods for estimating weed coverage are often
time-consuming and subjective, with results varying by evalua-
tor and field conditions. This makes consistent monitoring dif-
ficult. In contrast, image-based methods offer faster and more
objective estimation, reducing manual effort and improving
consistency.

In this study, weeds are broadly classified into three types
based on their growth patterns and shapes. Since weed types
differ in structure—such as spreading horizontally or growing
upright—treating all weeds as a single category can introduce
coverage estimation errors. Estimating the coverage of each
type separately helps reduce such errors and improves overall
accuracy.

II. RELATED WORKS

A. Measurement of Weed Dry Weight

In organic farming, understanding weed growth is essen-
tial for determining the necessity of weeding. One common
method to assess weed growth is to measure the dry weight of
weeds. This involves pulling up all weeds within a fixed area,
washing off the mud, and drying them in an oven for more
than two days before weighing them [3].

It has been reported that when the weed dry weight is 50
g/m? or less at the panicle initiation stage, additional weeding
is generally considered unnecessary. However, because this
method requires considerable time and labor, it is difficult to
carry out in the field, especially during busy farming periods.

B. MDR Based on the Quadrat Method

The quadrat method is a vegetation survey technique in
which a square area is defined, and plant species, number of
individuals, and coverage within that area are measured [4].
The Multiplied Dominance Ratio (MDR) based on the quadrat
method is an index calculated by multiplying the coverage
(%) by plant height (m), providing a simple and quantitative
measure of weed abundance, as shown in (1).

MDR [x0.01 m®/m?] = Coverage (%) x Plant Height (m)
(D

MDR has been shown to be significantly correlated with
weed dry weight. In particular, it has been reported that when
the MDR at the panicle initiation stage is 6 or less, the weed
dry weight remains below 50 g/m?, minimizing the impact
on yield [5]. Furthermore, when the MDR measured three
weeks after transplanting is 1 or less, the MDR at the panicle
initiation stage tends to be 6 or less. Therefore, measuring
the MDR three weeks after transplantation can be utilized for
early decision-making regarding weed control.

However, in practice, the coverage used in MDR calcu-
lation is often estimated visually within the quadrat, which
introduces subjectivity. As a result, the measured values may
vary depending on the evaluator, making it difficult to ensure
consistency and reproducibility across different observations.
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Fig. 1. Example of a captured image

C. Weed Height Estimation Using Image Recognition

Several methods have been proposed for estimating weed
height in paddy fields through image recognition.

The simplest involves manual input by users, but it requires
effort and lacks automation. Another approach uses reference
markers with known heights in the field; models like YOLOv8
detect both weeds and markers to estimate relative height,
though data scarcity can limit accuracy. A third method places
known-sized objects near weeds, extracts weed pixels in HSV
space, and uses Harris corner detection to find plant endpoints.
Background noise is reduced using Local Outlier Factor (LOF)
for improved accuracy.

D. Two-Stage Semantic Segmentation

Moazzam et al. proposed a two-stage semantic segmentation
approach to improve the accuracy of distinguishing between
crops and weeds [6].

In this method, the first stage separates vegetation (including
both crops and weeds) from the background by setting the
pixel values of the background to zero, thereby simplifying
the input data. In the second stage, the image is classified into
three classes: crops, weeds, and background. A lightweight U-
Net with a Vanilla Mini CNN is employed in the first stage to
reduce computational load, while a U-Net with VGG16 as the
backbone is used in the second stage to improve classification
accuracy.

This approach improved the IoU for crops from 0.67 to 0.85
and for weeds from 0.76 to 0.91 compared to conventional
single-stage methods. Furthermore, the use of a lightweight
model in the first stage contributed to a reduction in compu-
tational cost.

III. DATASET

A. Image Acquisition Method

To calculate the coverage, top-down images of rice paddies
were captured to ensure that an area containing a 3-by-3 grid
of rice plants was captured. As the row and plant spacing of
rice is approximately 30 cm, the photographed area covered
approximately 1 m x 1 m. An example of a captured image
is shown in Fig. 1. All images were resized to 1920 x 1920
pixels to ensure uniform size.



Fig. 2. Examples of weed classification (Left: broadleaf weeds and Poaceae,
Center: Cyperaceae [7], Right: submerged and floating-leaved aquatic plants)

B. Weed Classification

Weeds can be broadly classified into three categories. The
first category includes broadleaf weeds and Poaceae, which
are characterized by horizontally spreading leaves and are
typically emergent weeds that grow above the water surface.
The second category is Cyperaceae, which generally has
slender shapes and triangular stems and is classified as an
emergent weed. The third category includes submerged and
floating-leaved aquatic plants, which grow underwater and
float their leaves either on or just below the water surface.
Examples from each category are shown in Fig. 2.

C. Details of the Dataset

We used 92 images, each containing one or more weed
classes. The number of images in which each class appeared
were 68 for broadleaf weeds and Poaceae, 25 for Cyperaceae,
and 79 for submerged and floating-leaved aquatic plants.

Roboflow [8] was used for image annotation. The dataset
was divided into five classes: Weedl (broadleaf weeds
and Poaceae), Weed2 (Cyperaceae), Weed3 (submerged and
floating-leaved aquatic plants), rice, and background.

The dataset was divided into 66 training, 17 validation,
and 9 test images. To avoid a class imbalance within each
subset, the data were adjusted to maintain a balanced class
distribution.

IV. PROPOSED METHOD

In this study, both single- and two-stage semantic segmenta-
tion approaches were used to classify images into five classes:
Weedl, Weed2, Weed3, rice, and background. Coverage was
calculated based on the classification results.

In the two-stage approach, specific classes are predicted
in Stage 1, and their corresponding pixels are masked (set
to zero). The modified image is then used in Stage 2 for
final classification. Four methods were evaluated: one single-
stage and three two-stage approaches with different Stage 1
preprocessing strategies.

Images were resized to 1920 x1920 pixels and divided into
nine patches (640x 640) for training and inference. U-Net [9]
with a ResNet50 [10] backbone was used. DiceFocalLLoss [11]
and the Adam optimizer were applied for training.

A. Method 1: Single-Stage Segmentation

Single-stage segmentation is a straightforward approach in
which all five classes are predicted simultaneously in a single
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Fig. 3. Flowchart of Method 2: Two-stage segmentation with background
removal

inference. Because classification is completed in one pass, the
main advantage of this method is its low computational cost.

B. Method 2: Two-Stage Segmentation with Background Re-
moval

In Stage 1, a binary classification is performed to separate
vegetation (rice and weeds) from the background. Then, in
Stage 2, the input image is modified by setting the background
pixels—identified in Stage 1—to zero. This modified image
was then used as input to classify five classes: background,
rice, and three types of weeds. A flowchart of this method is
shown in Fig. 3.

By removing the background in Stage 1, the influence
of the background pixels was eliminated in Stage 2, which
was expected to improve the classification accuracy of rice
and weeds. Furthermore, reducing the effect of background
variability may help maintain performance across different
environments, potentially making this method more general-
izable.

C. Method 3: Two-Stage Segmentation with Rice Removal

In Stage 1, the rice regions within the image are identified,
and a binary classification is performed by treating non-rice
pixels as the background. Subsequently, in Stage 2, the input
image is modified by setting the background pixels—identified
in Stage 1—to zero. This modified image is used to classify
four classes: background and the three types of weeds. A
flowchart of this method is shown in Fig. 4.

This method aims to improve the accuracy of weed classifi-
cation by removing rice-related information. In particular, it is
expected to reduce misclassification between rice and weeds
and mitigate ambiguity around class boundaries.

D. Method 4: Two-Stage Segmentation with Background and
Rice Removal

In Stage 1, three-class segmentation is performed to classify
the pixels into background, rice, and weeds. In Stage 2, the
input image is modified by setting the pixels corresponding
to the background and rice—identified in Stage 1—to zero.
This modified image is then used to classify four classes:
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background and the three types of weeds. A flowchart of this
method is shown in Fig. 5.

By removing both the background and rice regions, weed
areas are emphasized, making their distinctive shapes, textures,
and color features more apparent. This is expected to improve
the learning efficiency of the classification model. Further-
more, eliminating noise from the background and rice may
help reduce misclassification, particularly for weed types that
visually resemble rice.

V. EVALUATION AND DISCUSSION

In this section, we evaluate and discuss the four proposed
methods from two perspectives: (1) semantic segmentation
performance, using metrics such as Precision, Recall, and IoU;
and (2) numerical evaluation of the estimated coverage using
MAE (Mean Absolute Error). The evaluation includes both
quantitative analysis and visualization-based assessment.

A. Quantitative Evaluation

1) IoU: To evaluate the segmentation performance, the loU
for each class was calculated using all four methods. The
results are summarized in Table 1.

As summarized in Table I, Method 1 achieved the highest
mean IoU of 0.59, followed by Method 2 (0.54), Method 3
(0.54), and Method 4 (0.39).

Additionally, Table I shows that for Methods 1-3, the ToU
of Weedl was consistently lower than that of Weed2 and

TABLE I
COMPARISON OF IoU FOR EACH METHOD

Method  Background Rice Weedl Weed2 Weed3 Mean
Method 1 0.98 076 031 049 044 0.9
Method 2 0.97 075 026 037 037 054
Method 3 0.97 075 022 040 037 054
Method 4 0.98 077 0.09 0.11 0.00 0.39
TABLE II
COMPARISON OF PRECISION
Method  Background Rice Weedl Weed2 Weed3 Mean
Method 1 0.99 085 046 069 063 0.72
Method 2 0.98 087 048 076 073 0.76
Method 3 0.98 086 053 075 081 0.79
Method 4 0.98 089 0.13 016 036 051

Weed3. Specifically, Method 1 showed an IoU of 0.31 for
Weedl, 0.49 for Weed2, and 0.44 for Weed3, indicating that
Weed1 was the most difficult to classify. The same trend was
observed in Methods 2 and 3, with Weedl IoUs of 0.26 and
0.22, respectively.

One possible reason for the lower classification accuracy
of Weedl is its morphological similarity to rice. Both Weed1
and rice have elongated, narrow leaves and can appear similar
from a top-down view, especially under conditions with strong
shadows or overlapping leaves. In addition, Weed1 often grows
in close proximity to rice plants, which can make boundary
regions more ambiguous. These factors may cause the model
to confuse Weed1 with rice, resulting in lower segmentation
accuracy.

2) Precision and Recall: To evaluate the classification ac-
curacy, we compared the precision and recall of each method.

As shown in Table I, Method 1 achieved the highest mean
IoU. However, as shown in Table II, Methods 2 and 3
outperformed Method 1 in terms of Precision for weed classes.
For Methods 2 and 3, Recall for weed classes was consistently
lower than Precision, as shown in Table III. This discrepancy
suggests that weed regions may have been misclassified as rice
or background during Stage 1, potentially leading to the loss of
weed information. Method 4, which removes both background
and rice in Stage 1, showed a significant drop in both Precision
and Recall, especially for Weed3, indicating that excessive
filtering may have hindered weed detection.

3) MAE: To evaluate the accuracy of the estimated cov-
erage, the MAE was compared across all methods. The
MAE represents the average absolute difference between the
predicted and ground truth coverage values, where lower
values indicate better estimation accuracy. The results are

TABLE III
COMPARISON OF RECALL
Method ~ Background Rice Weedl Weed2 Weed3 Mean
Method 1 0.99 0.87 048 0.63 059 0.71
Method 2 0.99 084 036 042 043 061
Method 3 0.99 086 027 046 040 0.59
Method 4 0.99 085 021 025 0.00 046




TABLE IV
COMPARISON OF MAE FOR WEED CLASSES

Method Weedl  Weed2 Weed3 Mean
Method 1 0.45 0.11 0.30 0.29
Method 2 0.52 0.09 0.30 0.30
Method 3 0.50 0.11 0.29 0.30
Method 4 0.75 0.56 1.33 0.88

summarized Table IV.

From Table IV, Methods 1 to 3 maintained stable accuracy,
with mean MAE values around 0.30. In contrast, Method
4 produced notably large errors across all weed classes,
particularly for Weed3, which reached a MAE of 1.33.

Among the weed types, Weedl consistently showed higher
MAE values (0.45-0.52), while Weed2 had the lowest
(0.09-0.11), and Weed3 fell in between (0.29-0.30). These
results indicate that coverage estimation was most accurate
for Weed2 and least accurate for Weed]l.

The overall trend shows that higher segmentation accuracy
corresponds to lower MAE, suggesting that improving classi-
fication performance leads to better coverage estimation.

B. Visual comparison of single-stage segmentation and three
two-stage segmentation methods

To compare the outputs of each method, predicted masks
were overlaid on input images using transparency-based visu-
alization. Class colors were set as follows: cyan for rice, pink
for Weedl, yellow for Weed2, and orange for Weed3. This
section highlights differences in weed recognition between
the single-stage method (Method 1) and the three two-stage
methods (Methods 2-4).

1) Comparison Between Method 1 (Single-Stage) and
Method 2 (Two-Stage with Background Removal): The visual-
ization shows that removing the background in Method 2 in-
creased confusion between rice and Weedl. With background
pixels removed, their similar shapes and colors became more
prominent, making classification harder. As shown in Fig. 6,
misclassification occurred especially in overlapping leaves and
varying growth stages.

2) Comparison Between Method 1 (Single-Stage) and
Method 3 (Two-Stage with Rice Removal): As shown in the
visualization results in Fig. 7, the removal of rice led to an
increase of correctly classified pixels for Weedl. However,
Weed3 was misclassified more frequently than Weed1. This
result suggests that rice may have served as a contextual clue
for distinguishing Weedl and Weed3. With the removal of
rice, the boundary between the features of Weedl and Weed3
became more ambiguous, making it more difficult for the
model to correctly classify the two.

3) Comparison between Method 1 (Single-stage Segmenta-
tion) and Method 4 (Two-stage Segmentation with Background
and Rice Removal): In the visualization shown in Fig. §,
Weed3 was misclassified as Weedl owing to the removal of
both background and rice. This suggests that the model relied
on the presence of rice and the background as contextual cues
for weed classification. By eliminating both, the model lacked

Prediction by Method 1 Prediction by Method 2

Fig. 6. Comparison of output results by Method 1 and Method 2 (example
of Weedl)

Fig. 7. Comparison of output results by Method 1 and Method 3 (example
of Weedl and Weed3)

sufficient contextual information to distinguish between the
weed classes, which likely led to an increase in misclassifica-
tion among the weed types.
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VI. CONCLUSION AND FUTURE WORK
A. Conclusion

In this study, we proposed and evaluated a method for
classifying multiple weed types and estimating their coverage
using top-down field images containing both rice plants and
various weeds. Four methods were compared: one single-
stage segmentation approach and three two-stage segmen-
tation approaches. The results showed that the single-stage
segmentation method (Method 1), which directly classifies all
classes—including rice and weeds—in a single step, achieved
the highest accuracy.

The lower performance of the two-stage methods likely
stems from two factors. First, rice and background regions pro-
vide useful context for distinguishing weed types, and remov-
ing them in Stage 1 may have discarded valuable information.
Second, errors in Stage 1 can propagate to Stage 2, reducing
overall accuracy. In contrast, the single-stage method not only
achieved higher accuracy but also has practical benefits. It
requires only one forward pass, lowering computational cost
and system complexity, making it more suitable for real-time
or low-resource agricultural settings.

The evaluation showed that Weedl was the most difficult
class to distinguish, mainly due to its morphological similarity
to rice—such as narrow and elongated leaves—which makes
visual separation challenging in top-down images. Its tendency
to grow close to rice further increases misclassification risks
due to overlapping vegetation.

B. Future Work

To improve the classification performance of Weedl1, which
showed low accuracy, we plan to expand the dataset with

a particular focus on this class and enhance data diversity
through methods such as Copy-Paste Augmentation. On the
modeling side, we will explore incorporating instance-level
features—such as attention mechanisms, spatial relationships,
and shape-based cues—to better distinguish visually similar
classes like Weedl and rice. In addition, we will evaluate
inference time, model size, and memory usage to assess the
feasibility of deployment on smartphones.

Currently, the height estimation process does not incorporate
weed classification. As a next step, we aim to integrate weed
type classification into the height estimation pipeline, enabling
the estimation of both coverage and height for each class.
Ultimately, our goal is to develop an application that calculates
the Multiplied Dominance Ratio (MDR) for each weed type
and uses the total MDR to assess the necessity of weeding.
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